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Heavy traffic congestion occurs daily at merging sections on a highway. For relieving this congestion,
possibility of alternative configuration of vehicles on multiple-lane road at a merging area is discussed in this
paper. This is the configuration where no vehicles move aside on the other lane. It has merit in making a
smooth merging at an intersection or a junction due to the so-called “zipper effect.” We show, by developing
a cellular automaton model for multiple lanes, that this configuration is achieved by simple local interactions
between vehicles neighboring each other. The degree of the alternative configuration in terms of the spatial
increase in parallel driving length is studied by using both numerical simulations and mean-field theory. We
successfully construct a theoretical method for calculating this degree of the alternative configuration by using
cluster approximation. It is shown that the theoretical results coincide with those of the simulations very well.
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I. INTRODUCTION

In recent years, traffic dynamics has attracted much inter-
est of physicists, and thus it has been studied more and more
diligently �1,2�. Researchers have mainly developed the
analysis of the traffic flow on one-lane road by using con-
tinuous models �3� and cellular automaton �CA� models �4�.
Recently, the analysis of the traffic flow on multiple-lane
road at an intersection or a junction is considered as one of
the important studies of traffic flow for releasing traffic con-
gestion. Kita modeled merging interactions with game theory
�5�. Hidas investigated vehicle interactions in merging and
weaving by using agent based simulations �6�. Davis intro-
duced the cooperation in merging by adding interactions be-
tween pairs of vehicles in opposite lanes �7�. He showed that
velocity of vehicles in cooperative merging was higher than
that in no cooperation.

However, these previous works were qualitative and did
not study the configuration of vehicles in detail on two lanes
before an intersection or a junction which determines the
efficiency of merging. Among various configurations, the al-
ternative configuration is the best because it realizes the
smooth “zipper” merging, which is the merging of vehicles
by turns on one lane and on the opposite lane. Thus, the
transformation of the configuration toward the alternative
configuration is significant for the improvement of the con-
gested flow at a junction.

The purpose of this paper is to propose a simple and natu-
ral method for achievement of the alternative configuration
of vehicles on two lanes. Then we study the method by both
computer simulations and a mean-field theory. The commu-
nication of vehicles on two lanes is studied by the CA model
which we call the multiple lanes stochastic optimal velocity
�MLSOV� model. This is an extension of SOV model pro-
posed in �8� by introducing the interactions between vehicles
on the opposite lane.

This paper is organized as follows. In Sec. II we define
MLSOV model, and results of simulations of two-lane flow

before an intersection is presented in Sec. III. Then in Sec.
IV we calculate the degree of alternative configuration by
using cluster approximation and compare it with the results
of the simulations. Section V is devoted to the concluding
discussions.

II. MULTIPLE LANES CA MODEL WITHOUT LANE
CHANGE

We propose here the MLSOV model by introducing inter-
actions between two lanes. We choose the SOV model as a
basis of our extended model because it is one of the simplest
model whose fundamental diagram, i.e., flow versus density
plot, shows the metastable state observed in real traffic data
�8�. MLSOV model represents the interactions of vehicles on
two lanes by seeing the ones on the opposite lane each other.
Note that we do not take into account of the lane change
behavior in this paper because we focus only on the achieve-
ment of the alternative configuration of vehicles before an
intersection. In the model, the movement of all vehicles on
both lane 1 and lane 2 is ruled as follows. ith vehicle on each
lane moves one cell in front in one time step with probability
vi

t at time t provided that the next cell is empty. Thus the
movement is described as

xi
t+1 = �xi

t + 1, with probability vi
t

xi
t, with probability 1 − vi

t,
� �1�

where xi
t is the position of ith vehicle at time t as shown in

Fig. 1. vi
t is called intension and normalized as 0�vi

t�1. i
+1-th vehicle is located at the cell which is �x1,i

t cells ahead
of ith vehicle on the same lane as shown in Fig. 1. The length
of one cell is set as 7.5 m.

In the MLSOV model, the time evolution of vi
t is deter-

mined not only by ith and i+1-th vehicle but also j+1-th
vehicle which is the closest vehicle to ith vehicle on the
neighboring lane, with the distance �x2,i

t cells ahead as
shown in Fig. 1. vi

t is given as
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vi
t+1 − vi

t = a�V��x1i
t ,�x2i

t � − vi
t� , �2�

where V��x1,i
t ,�x2,i

t � is the two-lanes optimal velocity �OV�
function �3�. vi

t tends to approach V��x1,i
t ,�x2,i

t � with the
increase in the sensitivity parameter a�0�a�1�. We define
for convenience �x1,i

t =� in the case that i+1-th car does not
exist and �x2,i

t =� in the case that j+1-th car does not exist.
Now, we set the concrete form of V as

V��x1i
t ,�x2i

t � =	
0, �x1,i

t = 0

r , �x1,i
t � 1 and �x2,i

t = 0

q , �x1,i
t � 1 and �x2,i

t = 1

p , �x1,i
t � 1 and �x2,i

t � 2,

 �3�

which is simple enough to achieve the alternative configura-
tion as shown below. Here we consider special two cases of
the time evolution of vi

t with the initial condition of vi
0= p. In

the case a=0, MLSOV model corresponds to the single-lane
asymmetric simple exclusion process �ASEP� �9�, since each
vehicle moves irrespective of neighboring ones and vi

t is
given as

vi
t = p . �4�

In the case a=1, MLSOV model corresponds to a two-lane
version of the zero range process �ZRP� �10�, and vi

t is given
as

vi
t =	

0, �x1,i
t = 0

r , �x1,i
t � 1 and �x2,i

t = 0

q , �x1,i
t � 1 and �x2,i

t = 1

p , �x1,i
t � 1 and �x2,i

t � 2.

 �5�

Note that in the case a=0, the model is exactly solvable and
we can theoretically calculate the stationary state and hence
the fundamental diagram. In the case a=1, if we neglect the
effect of the other lane, then we can also solve the model
exactly.

III. SIMULATIONS

Our idea for making the traffic flow smooth is to draw the
compartment line between the lanes as shown in Fig. 2. The
line prohibits vehicles from changing lanes, and this will be

used for communicating vehicles between lanes and ex-
pected to induce the zipper effect at the end of the line. Then,
the disordered lane change at the merging area will be
smooth and becomes safe.

The part of two-lane road indicated in Fig. 2�b� is parti-
tioned into identical cells as shown in Fig. 2�c�. The cell size
is fixed and one cell can accommodate at most one vehicle.
The boundaries are open, and each vehicle is updated in
parallel, and it enters in the leftmost cell on lane 1 or lane 2,
and moves straight ahead without changing lanes, and goes
out of the rightmost cell. Although the vehicles cannot
change lanes, vehicles on one lane can interact with the ones
on the opposite lane by looking at the behavior of these
vehicles.

All the parameters are defined in Fig. 2�c�. The length of
this section is d, and the leftmost cells are at x=0 and the
rightmost cells are at x=d−1. In the simulations we choose
the worst injection condition for merging, i.e., a vehicle en-
ters in x=0 simultaneously on lane 1 and lane 2 with the
probability � as long as both leftmost cells are empty. This
injection is considered to be the most severe configuration
for attaining the alternative configuration at the end of the
road where merging occurs. If we give another condition,
such that the injection into one lane is independent of the
injection into another lane, the configuration is highly alter-
native from the beginning when the density is rather low, and

FIG. 1. The vehicles that affect the behavior of ith vehicle in
MLSOV model. i+1-th vehicle is at the cell which is �x1,i

t cells
ahead of ith vehicle on the same lane. j+1-th vehicle is the closest
vehicle to the ith vehicle with the distance �x2,i

t cells ahead on the
neighboring lane.

( b )  A f t e r  o u r  p l a n

C o m p a r t m e n t  l i n e

D i s o r d e r e d  l a n e  c h a n g e

M e r g i n g  B i f u r c a t i o n  

a n e 1

a n e 2

C o m p a r t m e n t  L i n e

( a )  B e f o r e  o u r  p l a n

( c )  C A  m o d e l

S m o o t h

l a n e  c h a n g e

A l t e r n a t i v e  

c o n f i g u r a t i o n

FIG. 2. �a� An example of traffic flow on a weaving section
before using our plan of drawing a compartment line at the merging
area. Disordered lane changes cause traffic congestion at the merg-
ing area. �b� An example of traffic flow after introducing our plan.
The line prohibits vehicles from changing lanes, and is expected to
make smooth lane changes by achieving alternative configurations.
�c� A CA model of a two-lane road with the compartment line. Each
vehicle enters in the cell at x=0 on both lane 1 and lane 2 simulta-
neously with the probability �, and goes out of the cell at x=d−1
with the probability �i�i=1,2�.
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vehicles do not have to synchronize with other ones on the
opposite lane. Therefore, in this paper we show only the
results under the simultaneous injection. We will demon-
strate in the following that the alternative configuration is
surely achieved in free flow region. The probability of going
out of the rightmost cell of lane i is set as �i�i=1,2�.

Next, we define two important quantities in the simula-
tions. First, we quantify the degree of the alternative configu-
rations of vehicles, G. G is a function of x, and G�k� denotes
the degree of the alternative pattern of vehicles at x=k. In the
simulations, G�k� is calculated by counting the state of the
four cells at x= �k ,k+1�. There are ten kinds of state labeled
as S�n��n=1,2 , . . .10� shown as Fig. 3. The symmetry be-
tween lane 1 and lane 2 is taken into account for eliminating
the similar state. We defined c�n�k�n=1,2 , . . .10� as the total
number of each S�n� at x= �k ,k+1� appeared through M
times of simulations under the same conditions. The period
for measurement of each simulation is set as T1� t�T2−1.
When there is at least one vehicle at x=k, the state of the
four cells at x= �k ,k+1� can be n=3,5 ,6 ,7 ,8 ,9 ,10 in S�n�.
Only S�3� among them represents the perfect alternative state
which is defined by Fig. 4. Thus, G�k� is given by c�n�k as

G�k� = c�3�k/�c�3�k + c�5�k + c�6�k + c�7�k + c�8�k + c�9�k

+ c�10�k� . �6�

G ranges from 0 to 1. The large value of G�k� denotes that
the alternative configuration of vehicles at x=k is highly
achieved.

Second, we define the mean intension, i.e., mean velocity
on the two cells at x=k�0�k�d−1� denoted by v̄�k�, which
is given by

v̄�k� =

�
j=0

M−1

�
i=0

Nj−1

�
t=T1

T2−1

vi
t�xi

t,k

�
j=0

M−1

�
i=0

Nj−1

�
t=T1

T2−1

�xi
t,k

, �7�

where �xi
t,k is defined as 1 if xi

t=k, and 0 if xi
t�k. This is

calculated through M times of simulations under the same
conditions, and Nj�0� j�M −1� is the total number of ve-
hicles entering in the leftmost cells on both lane 1 and lane 2
in jth simulation. The period for measurement of each simu-
lation is the same as that of G.

We obtained G�x� versus x and v̄ versus x by using nu-
merical simulations. The conditions of the simulations are
follows. Three sets of parameters in the OV function are
chosen as p=1 and �q ,r�= ��0.99,0.99� , �0.8,0.8� ,
�0.5,0.5��. Moreover, four kinds of the value of the sensitiv-
ity parameter are chosen as a= �0.001,0.01,0.1,1�. The
length of the road is set as d=100. The range of the prob-
ability of simultaneous injection on both lane 1 and lane 2 is
given as 0	�	0.1. Vehicles enter in the leftmost cells with
the initial intension p which appears in Eq. �3�. �i�i=1,2� is
given as each vehicle’s intension v on the cell at x=d−1. We
see that traffic flow is always in a free flow under this � and
�i. The number of iterations of the simulations is M =10, and
the period for measurement is between T1=100 000 and T2
=200 000. Our aim is to prevent free flow from becoming
congested. Therefore, we have investigated G�x� versus x
and v̄ versus x in the case of free flow, which is �	0.1 �see
Appendix A�. The results show that the forms of G�x� versus
x, and v̄ versus x are same in this range of �. Thus, we show
only the results in the case of �=0.05 in detail as follows.

The results of the simulations are shown in Fig. 6. From
Fig. 6 we see that G�x� increases monotonically from 0 to 1
as x became larger. The sharpness of the increase of G�x�
becomes larger as a becomes larger, and as q�=r� becomes
smaller from Figs. 6�a�–6�c�. v̄�x� has one minimum value in
the case of from Figs. 6�d�–6�f�. The position x which gives
the minimum value of v̄ becomes smaller as a becomes
larger, and as q�=r� becomes smaller. The minimum value of
v̄�x� becomes smaller as a becomes larger, and as q�=r� be-
comes smaller.

Figures 6�a�–6�c� clearly show the achievement of the
alternative configuration toward the spatial axis. These fig-
ures suggest us how we realize the smooth merging at an
intersection or a junction. The sufficient length of compart-
ment line for communicating is significant for the achieve-
ment of the alternative configurations. For instance, if we set
the target G as Gtar=0.6 in the case of a=0.01, which are
typical values of real traffic �11�, and in the case of p=1, and
q=0.8, then we achieve this value of G by drawing the line
of 34 cell length which is equal to 255 m. Note that this
alternative configuration is formed only by the local interac-
tion within the range of �x2�1 of each vehicle. The rela-
tionships between a and the sharpness of the increase of G�x�
suggest that the length of line necessary for realizing the
complete alternative configuration becomes shorter if ve-
hicles respond to the ones on the opposite lane more quickly.
The relationships between q and the sharpness of the in-
crease of G�x� suggest that this length of line becomes
shorter if vehicles decelerate more strongly in the case of
�x2�1.

C o m p a r t m e n t  L i n e

FIG. 3. Ten kinds of the state labeled by S�n� in the four cells at
x= �k ,k+1�. The symmetry between lane 1 and lane 2 is taken into
account to reduce the number of states.

C o m p a r t m e n t  L i n e

FIG. 4. The perfect alternative configuration on the two-lane
road. When at least one vehicle exists at x=k, only S�3� represents
this perfect alternative configuration.
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The spatial change in v̄�x� is caused by the interactions
between the vehicles neighboring each other in two steps.
First, ith vehicle enters into x=0 with �x2,i=0 and slows
down due to the OV function V	1 to apart from the ones on
the neighboring lane. It keeps slowing down until �x2,i�2.
Then, �x2,i=2 is attained, and it starts to accelerate with V
=1. These interactions generate the minimum value of v̄�x�
at the point where �x2 of the most vehicle becomes 2. Ve-
hicles slow down more quickly as the response parameter a
becomes larger, and q�=r� becomes smaller. Thus, x which
give the minimum value of v̄�x� becomes smaller as a be-
comes larger, and as q becomes smaller.

Note that the hesitative behavior of drivers does not de-
crease the flux as long as the congestion does not grows,
which is the case of ��0.15 �see Appendix A�.

IV. ANALYSIS OF ALTERNATIVE CONFIGURATIONS
WITH CLUSTER APPROXIMATION

In this section, we theoretically study the achievement of
alternative configurations by using cluster approximation. In
the approximation, the two-lane road as shown in Fig. 2 is
divided into the four cells at x= �k ,k+1��k=0,1 , . . . ,d−2�
which is denoted by Ck. Then, the stationary state on Ck is
calculated in the order of k=0,1 , . . . ,d−2. The state vector
of Ck at time t is defined as 
k

t = �
�1�k
t ,
�2�k

t , . . . ,
�10�k
t �,

where 
�n�k
t �1�n�10� is the probability of Ck having the

state Sn at time t as shown in Fig. 3. The state transition of Ck

from 
k
t to 
k

t+1 is defined by using the state transition matrix
Pk whose size is 10�10. This state transition is given as


k
t+1 = Pk
k

t . �8�

The stationary state 
k
� is given as the solution of


k
� = Pk
k

� �9�

with the normalized condition �n=1
10 
�n�k

�=1. We construct
Pk, and calculate 
k

� in the following order.
�1� We construct P0, and then calculate 
0

�.
�k� We construct Pk−1, and then calculate 
k−1

� .

�2 � k � d − 2�

]

�d−1� We construct Pd−2, and then calculate 
d−2
� .

This order of calculation needs approximations in con-
structing Pk �0�k�d−3� because constructing Pk needs

k+1

� which is not yet calculated. The approximations for the
construction of Pk are given in the following by the boundary
conditions �BCs�, and by the dynamics of vehicles on Ck.

The BCs of each Pk�k=0,1 ,2 , . . . ,d−2� are given as
shown in Fig. 5. The left BC of P0 is given strictly as ve-
hicles entering in the leftmost cells simultaneously with
probability � provided that both leftmost cells are empty.
The right BC of P0 needs approximations because the sta-
tionary state of Ck�1�k�d−2� is not yet calculated. The
right BC of P0 is approximated as a pair of vehicles existing
on both cells at x=2 with probability �́. Giving �́ simply as
�́=� is a good approximation in the case of free flow. How-

ever, giving the more accurate �́ improves our cluster ap-
proximation because the leftmost information is important
under the direction of our calculations: from left to right.
Thus, we take into account the call loss at the leftmost cells
in giving �́. �́ is given by the equation �́=��1− �́�, there-
fore, �́=� / �1+��. The left BC of Pk�1�k�d−3� is the
stationary state of Ck−1 which is given strictly by 
k−1

� . The
right BC of Pk�1�k�d−3� is the stationary state of Ck+1

which is not yet calculated. This stationary state is approxi-
mated by using 
k−1

� directly, i.e., the stationary state at x
= �k+1,k+2� is given by using directly that at x= �k−1,k�.
The left BC of Pd−2 is the stationary state of Cd−3 which is
given strictly by 
d−3

� . The right BC of Pd−2 is given strictly
as vehicles go out of the rightmost cell on lane i�i=1,2� with
probability �i. Note that these approximations of the right
BC of Pk�0�k�d−3� are valid for the reason as follows.
The flow considered in this paper is in free state, and the
spatial change in the stationary state of the whole road is
small. Therefore, approximating the right BC by using di-
rectly the left state which is already known gives a good
approximated solution. Note also that in the case of free flow
in ASEP, i.e., in the case of free flow, and a=1 of MLSOV
model, the flow is controlled only by the injection condition
�. This approximation to the ASEP, in which the right BC is
replaced by using the left values, gives a good result which is
close to the exact solution of ASEP.

The dynamics of vehicles in this cluster approximation is
given as follows. We update the intension of vehicles spa-
tially to represent the spatial change in the mean intension v̄
observed in the simulation results �Figs. 6�d�–6�f��. To real-
ize the spatial change of the intension in calculating Pk, we
define ui,k�0�k�d−2� as the intension of ith vehicle at k
−1�x�k+1 for 1�k�L−2, or at 0�x�1 for k=0. To
give the specific form of ui,k, we use ṽk defined as the inten-
sion common to the vehicles at k−1�x�k+1 for 1�k

�L−2, or at 0�x�1 for k=0, and V̄k�0�k�d−2� defined

as the stationary mean OV function of Ck. V̄k is calculated by
using 
k

� as

l e f t r i g h t l e f t r i g h t l e f t r i g h t

FIG. 5. The BC of each Pk�k=0,1 ,2 , . . . ,d−2�. The right BC of
P0 is approximated as a pair of vehicles existing on both cells at
x=2 with probability �́. �́ is approximated as �́=� / �1+�� which is
the expected density of the loss system. The right BC of Pk�1�k
�d−3� is the stationary state of Ck+1 which is approximated by
using 
k−1

� directly. These approximations are valid as long as the
flow is in free state, and the spatial change of the stationary state of
the whole road is small.
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V̄k = �p
�3�k
� + q
�6�k

� + 2r
�7�k
� + r
�9�k

��/�
�3�k
�

+ 
�5�k
� + 
�6�k

� + 2
�7�k
� + 
�8�k

� + 2
�9�k
�

+ 2
�10�k
�� , �10�

and ṽk is updated spatially as

ṽk+1 = �1 − a�ṽk + aV̄k. �11�

ui,k is given by using ṽk, and by the configuration on Ck as

ui,k = �1 − a�ṽk + aV��x1,i,�x2,i�

=	
�1 − a�ṽk, �x1,i = 0

�1 − a�ṽk + ar , �x1,i � 1 and �x2,i = 0

�1 − a�ṽk + aq , �x1,i � 1 and �x2,i = 1

�1 − a�ṽk + ap , �x1,i � 1 and �x2,i � 2.



�12�

The detail construction of Pk is shown in Appendix A.
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FIG. 6. G�x� versus x and v̄�x� versus x obtained by the simulations, together with Gx
� versus x and ṽx versus x calculated by the four

cluster approximation. Gx
� is defined as the degree of the alternative pattern of vehicles, and ṽx is defined as the mean intension of vehicles,

which are given in the cluster approximation �see Sec. IV�. q�=r� is given as q=0.99 in the cases �a� and �d�, and q=0.8 in the cases �b� and
�e�, and q=0.5 in the cases �c� and �f�. G�x� and Gx

� increase monotonically as x increases, and the sharpness of the increase of G�x� and Gx
�

becomes larger as a becomes larger, and as q�=r� becomes smaller. v̄�x� and ṽx have one minimum value. The injection parameter is set as
�=0.05. For other values of �, the forms of these figures are same as long as � is small, which is the free flow case.
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The degree of the alternative configurations at x=k�0
�k�d−2� in the stationary state is defined as Gk

� which is
given by using 
k

� as

Gk
� = 
�3�k

�/�
�3�k
� + 
�5�k

� + 
�6�k
� + 
�7�k

� + 
�8�k
�

+ 
�9�k
� + 
�10�k

�� . �13�

We measure Gx
� versus x, and ṽx versus x, and compare

them with the simulation results. The conditions of the clus-
ter approximation are given similarly to the simulations. d, p,
q, r, a, and � are the same to those of the simulations.
� j�j=1,2� is given as the ui,d−1 for each ith vehicle. The
initial intension of vehicles is given as ṽ0= p. The results of
the four cluster approximation are shown in Fig. 6 together
with the simulation results to compare the theoretical results
with the simulations.

Both Gx
� and ṽx coincide with G�x� and v̄�x�, respectively.

The difference �Gx
�−G�x�� is smaller in the case of a=1 than

that of a=0.1. The coincidence between Gx
� and G�x� with

various a and q suggests that our four cluster approximation
is a good theoretical approximation for obtaining the alterna-
tive formation. We can obtain the length of the communica-
tion line necessary for the target of G by the theoretical cal-
culation as well as by the simulations. For other values of �,
we also have obtained the same forms of Gx

� versus x, and ṽx
versus x as long as � is small, which is the free flow case.
Various Gx

� are generated by the spatial update of the inten-
sion as shown in Eqs. �10�–�12�. �Gx

�−G�x�� in the case of
a=1 are smaller than that of a=0.1 because the calculation
of ui,k does not contain the approximation of the spatial up-
date of ṽx in the case of a=1. ui,k in the case of a=1 is given
as

ui,k = 	
0, �x1i = 0

r , �x1i � 1 and �x2i = 0

q , �x1i � 1 and �x2i = 1

p , �x1i � 1 and �x2i � 2.

 �14�

The coincidence of ṽx and v̄�x� suggests that this spatial
update of the intension is a good approximation for express-
ing the spatial change of the mean intension.

V. CONCLUDING DISCUSSIONS

In this paper we have proposed a simple method for the
achievement of alternative configurations of vehicles by us-
ing MLSOV model. We obtain the achievement of alterna-
tive configurations of vehicles by emergent behavior of driv-
ers. This alternative configuration is achieved along a
compartment line which is drawn between two lanes, and
prohibits vehicles from changing lanes, and permits them to
interact with the ones on the opposite lane. This configura-
tion is achieved in the free flow while is not achieved in the
congested flow as shown in Appendix A. This achievement is
significant for traffic engineering in preventing the free flow
from becoming congested by realizing the smooth “zipper
merging,” and is supported by the four cluster approxima-
tion. Moreover, drawing compartment lines for realizing this
alternative configuration costs less than other methods for

easing traffic congestion at an intersection, e.g., construction
of a cubic interchange. Further improvement of the flow at
an intersection or a junction by the alternative configuration,
and investigating the transformation of vehicles on two lanes
when the traffic flux of one lane is different from that of
another lane will be published elsewhere �12�.

APPENDIX A: THE FLUX UNDER THE HESITATIVE
INTERACTIONS OF VEHICLES BETWEEN TWO LANES

In this appendix, we show the hesitative behavior used in
Sec. III does not decrease the traffic flux as long as the den-
sity is low enough by using numerical simulations. We use
the two-lane road model as shown in Fig. 7. This is com-
posed of two parts. The first part is the two-lane road before
merging, and vehicles on it cannot see the ones on the oppo-
site lane, and move forward irrespective of them. This be-
havior is represented in MLSOV model by �x2,i

t =�. The
second part is the two-lane road on the merging section
drawn a compartment line, which is identical to the road
described in Sec. II Vehicles enter in the leftmost cell of the
first part on lane 1 or lane 2, and move straight ahead without
changing lanes, and go out of the rightmost cell of the sec-
ond part. The length of the first part is d0, and that of the
second part is d1. The leftmost cells of the first part are set as
x=0 and the rightmost cells of the second part are set as x
=d0+d1−1. The injection condition is given similarly to that
in Sec. III, i.e., a vehicle enters in x=0 simultaneously on
lane 1 and lane 2 with the probability � as long as both
leftmost cells are empty. The probability of going out of x
=d0+d1−1 of lane i is set as �i�i=1,2�.

We investigate the effect of the hesitative driver behavior
on the flux of vehicles by calculating the call loss probability
of the injection. It is defined as the ratio of the number of
failures in simultaneous injections owing to the vehicles ex-
isting at x=0, to the total number of trials to enter simulta-
neously in x=0. The simulation results are shown in Fig. 8
under the conditions given in Fig. 8. The call loss probability
is same irrespective of a at �	0.15.

This invariance of the call loss probability toward a at
�	0.15 suggests that the hesitative behavior, represented by

L a n e 2

L a n e 1

C o m p a r t m e n t  l i n e

C o m p a r t m e n t  L i n e

FIG. 7. A two-lane road composed of two parts partitioned into
identical cells. The first part is the two-lane road before merging.
Vehicles on it cannot see other vehicles on the opposite lane, and
does not interact with them. The second part is the two-lane road in
the merging section, and is drawn the compartment line.
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p�q and p�r in Eq. �3�, does not decrease the traffic flux
as long as the density is low enough. This invariance of the
call loss probability also suggests that the shocks do not
grow in the case of �	0.15. Note that the sharp increase in
the call loss probability in the case of a=0.1 and a=0.01 at
��0.15 is caused by the congestion. In the case of con-
gested flow, alternative configurations are not achieved.

We focus on preventing the free flow from becoming con-
gested. The region of congested flow is ��0.15. Around �
=0.15, the flow is in the state of the transition from free flow
to congested flow. Therefore, we investigate and analyze the
free flow in the case of �	0.1. In the case of �	0.1, the
results obtained in Secs. III and IV, i.e., G versus x, and
mean intension versus x, have the same forms. Therefore, we
show one of the cases of free flow, which is �=0.05, in Secs.
III and IV.

APPENDIX B: THE DETAIL OF CONSTRUCTION OF THE
STATE TRANSITION MATRIX Pk

In this appendix, we show the detail of construction of Pk
by calculating an element of Pk. We define Pk�i , j� �1
� i , j�10� as the element of Pk at ith row, and jth column.
Pk�i , j� is the probability of the transition of the state from
S�j� to S�i� on Ck. Among the elements of Pk, here we choose
to calculate Pk�7,6� in the case of 1�k�d−3. Then the
other elements can be easily calculated accordingly. The
transition from S�6� to S�7� on Ck is shown in Fig. 9�a�,
where S�6� denotes the two states which are symmetric with
each other between two lanes. In this calculation, 
k−1

� , and
ṽk are already known. 
k−1

� is used for BC of Ck as follows.
When the state on Ck is S�6�, the possible left BC of Ck, i.e.,
the possible states at k−1�x�k, are named SL,k

6 �n��n

=2,5 ,6 ,9� as shown in Fig. 9�b�. The configuration of ve-
hicles of SL,k

6 �n� is same as that of S�n� as shown in Fig. 3.
The probability of having SL,k

6 �n� is set as AL,k
6 �n��n

=2,5 ,6 ,9�. AL,k
6 �n� is the conditional probability among the

all possible states �SL,k
6 �2� ,SL,k

6 �5� ,SL,k
6 �6� ,SL,k

6 �9��, and is
given as

AL,k
6 �n� =


�n�k−1
�


�2�k−1
� + 
�5�k−1

� + 
�6�k−1
� + 
�9�k−1

� . �B1�

Note that �n=2,5,6,9AL,k
6 �n�=1. When the state on Ck is S�6�,

the possible right B.C. of Ck, i.e., the possible states at k
+1�x�k+2, are named SR,k

6 �m��m=3,5 ,6 ,8� similarly to
SL,k

6 �n� as shown in Fig. 9�c�. The probability of having
SR,k

6 �m� is set as AR,k
6 �m��m=3,5 ,6 ,8�, and is given as

AR,k
6 �m� =


�m�k−1
�


�3�k−1
� + 
�5�k−1

� + 
�6�k−1
� + 
�8�k−1

� .

�B2�

Note that the right BC of Ck, i.e., the state at k+1�x�k
+2 is given approximately by using 
k−1

� . In calculating Pk,
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FIG. 8. Call loss probability of the injection versus � obtained
by the simulations. This probability is same irrespective of the re-
sponse parameter a at �	0.15. The sharp increase in this probabil-
ity in the case of a=0.1 and a=0.01 at ��0.15 means that the
congestion occurs. The parameters in the OV function are chosen as
p=1 and �q ,r�= �0.5,0.5�. Moreover, four kinds of the value of the
sensitivity parameter are chosen as a= �0.001,0.01,0.1,1�. The
length of the road is set as d0=d1=100. Vehicles enter in the left-
most cells with the initial intension p. �i�i=1,2� is given as each
vehicle’s intension v on the cell at x=d0+d1−1. The number of
iterations of the simulations is M =1, and the period for measure-
ment is 100 000� t	200 000.

( b )  L B C

( c )  R B C

( a )

L B C R B C S y m m e t r i c  b e t w e e n  
t w o  l a n e s

a m e  o f  s t a t e

P r o b a b i l i t y

S y m m e t r i c  
b e t w e e n  
t w o  l a n e s

N a m e  o f  s t a t e

P r o b a b i l i t y

S y m m e t r i c  
b e t w e e n  
t w o  l a n e s

FIG. 9. �a� The transition from S�6� to S�7� on Ck�1�k�d
−3�. �b� The left BC of Ck in the state of S�6�, and �c� the right BC
of Ck in the state of S�6�. AL,k

6 �n��n=2,5 ,6 ,9� is the conditional
probability of having the state SL,k

6 �n� among the all possible states,
�SL,k

6 �2� ,SL,k
6 �5� ,SL,k

6 �6� ,SL,k
6 �9��. AR,k

6 �m��m=3,5 ,6 ,8� is the condi-
tional probability of having the state SR,k

6 �m� among the all possible
states, �SR,k

6 �3� ,SR,k
6 �5� ,SR,k

6 �6� ,SR,k
6 �8��. The right BC of Ck is given

approximately by 
k−1
� .
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the intension of vehicles is determined by Eq. �12�. We de-
fine uk

p= �1−a�ṽk+ap, and uk
q= �1−a�ṽk+aq, and uk

r = �1
−a�ṽk+ar for simplifying the notations. Now, we calculate
Pk�7,6�. The transition from S�6� to S�7� on Ck has three
stochastic processes, the movement of one vehicle from x
=k−1 to x=k, and the rest of one vehicle at x=k, and the
movement of one vehicle from x=k to x=k+1. The probabil-
ity of the first process is given by AL,k

6 �6�uk
q+AL,k

6 �9�uk
r, and

the probability of the second process is given by 1−uk
q, and

the probability of the third process is given by AR,k
6 �3�uk

p

+AR,k
6 �6�uk

q. Therefore, Pk�7,6� is given as

Pk�7,6� = �AL,k
6 �6�uk

q + AL,k
6 �9�uk

r��1 − uk
q�

��AR,k
6 �3�uk

p + AR,k
6 �6�uk

q� . �B3�

The other elements of Pk�k=0, . . . ,d−2� under the condi-
tions � j =ui,d−1�j=1,2� for ith vehicle are uniquely deter-
mined similarly to Pk�7,6�, and are shown in �11�.

�1� D. Helbing, Rev. Mod. Phys. 73, 1067 �2001�.
�2� D. Chowdhury, L. Santen, and A. Schadschneider, Phys. Rep.

329, 199 �2000�.
�3� M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sug-

iyama, Phys. Rev. E 51, 1035 �1995�.
�4� M. R. Evans, N. Rajewsky, and E. R. Speer, J. Stat. Phys. 95,

45 �1999�.
�5� H. Kita, Transp. Res., Part A: Policy Pract. 33, 305 �1999�.
�6� P. Hidas, Transp. Res., Part C: Emerg. Technol. 13, 37 �2005�.

�7� L. C. Davis, Physica A 361, 606 �2006�.
�8� M. Kanai, K. Nishinari, and T. Tokihiro, Phys. Rev. E 72,

035102�R� �2005�.
�9� B. Derrida, E. Domany, and D. Mukamel, J. Stat. Phys. 69,

667 �1992�.
�10� F. Spitzer, Adv. Math. 5, 246 �1970�.
�11� R. Nishi, Master’s thesis, University of Tokyo, 2008.
�12� R. Nishi, H. Miki, A. Tomoeda, and K. Nishinari �unpub-

lished�.

NISHI et al. PHYSICAL REVIEW E 79, 066119 �2009�

066119-8


